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Abstract

This paper presents the application of a neural network for the prediction of the UCS from hardness tests on rock samples.

To investigate the suitability of this approach, the results of the network are compared to predictions obtained by conventional
statistical relations.
The network was trained to predict the UCS based on the hardness, porosity, density, grain size and rock type information of

a rock sample. A dataset containing 194 rock sample records, ranging from weak sandstones to very strong granodiorites, was

used to train the network with the Levenberg±Marquardt training algorithm. Two sets, each containing 17 rock samples, were
used to validate the generalization and prediction capabilities of the network. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

We developed a computer program to predict the
uncon®ned compressive strength (UCS) of rock
samples using a back-propagation supervised neural
network. A neural network is a computational system
composed of nodes (called neurons) and connections
between these nodes. When trained with a su�cient
number of training records (i.e. rock samples) the net-
work recognizes the di�erent existing relations for the
given problem.

Commonly, the UCS of rock samples is determined
using either the laboratory UCS test or UCS corre-
lated index tests. In the UCS test, the strain of a rock
sample is measured while the uncon®ned compressive
force is increased. The stress at which the sample fails
is referred to as the peak strength. The second
approach uses index tests to predict the UCS instead
of measuring it. The major advantages of the use of
index tests are the low costs involved and their ¯exi-
bility.

In 1993 Verwaal and Mulder [1] investigated the
possibility to predict the UCS from rock hardness in-
formation using the Equotip hardness tester [2]. On
the basis of their ®ndings Asef [3] concluded that the
Equotip hardness tester can serve as an index test for
rock strength properties. Both the research of Verwaal

and Mulder [1], as well as the investigation of Asef [3]
resulted in statistical UCS predicting models.

The major demerit of statistical relations (e.g. re-
gression analysis) is the prediction of mean values
only. Consequently, low UCS values are overesti-
mated, while high UCS values are underestimated. A
neural network does not force the predicted UCS
value to be a mean value, thus preserving and using
the existing variance of the measured data.

This paper presents a neural network capable of pre-
dicting the UCS of rock samples. The rock samples,
used to train the network, were assembled in the
Falset area (near Tarragona, NE) and are of
Carboniferous to Cretaceous age. Each sample is
described by six di�erent rock characteristics. The rock
characteristics which function as the training input of
the network are: Equotip reading, porosity, density,
grain size and rock type, while the corresponding UCS
value functions as the training output of the network.

2. Rock sample characterization

Rock strength is known to be related to the texture
and mineralogical composition of the rock. Most criti-
cal are: mineralogical composition (rock type), density,
porosity and grainsize [4]. Therefore, the network pre-
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dicts the UCS while knowing the Equotip hardness
reading, porosity, density, grain size and the type of
rock of a sample. The latter two descriptors are speci-
®ed in a linguistic manner. So, a conversion into nu-
merical values is necessary in order to use this
information in both the statistical and neural network
models. Because most geologists are unfamiliar with
the Equotip hardness tester, some background infor-
mation of this device is given ®rst.

2.1. The Equotip hardness tester

The hardness1 of a rock is de®ned in this investi-
gation as the response of the rock material to an
impacting device, in this case the Equotip tester
(Fig. 1).

The Equotip hardness tester [2] is composed of an
impact device (ball of tungsten carbide) and an elec-
tronic rebound velocity measuring device. The impact
ball is ``®red'' against the material surface, and when
the ball rebounds into the device it generates an
induced current in the coil. The measured voltage of
this current indicates the rebound velocity. The ratio
between the rebound and the impact velocity can be
considered as the hardness value L [6]:

L � Vrebound

Vimpact
� 1000: �1�

The impact energy of the device is approximately
3 Nmm, yielded by the 3 mm diameter tip. Several
types of impact testers (probes) are available for the
Equotip. Due to the stronger correlation between the
readings of probe C with the UCS values compared to
other probes (e.g. probe D), probe C is used in this
study to determine the hardness of all rock
samples [3, 7].

2.2. Rock description conversion

Besides the measured porosity, density and UCS
value, also a description of the texture and rock type
is given for the individual rock samples in the data set.
However, to make use of the linguistic descriptions in
neural networks and statistics, those descriptions have
to be converted into numerical values. It is important
to be consistent in such a conversion (Table 1). Thus,
the type of rock is classi®ed according to its strength.
The texture is rated from ®ne grained to conglomerate.

2.3. Rock sample data

The data set used to develop the network model
consists of sandstones, limestones, dolomitic lime-
stones, dolomites, granites and granodiorites. Table 2
lists the descriptive statistics of the data. The minimum
and maximum values given in Table 2 of the di�erent
rock sample properties function as the boundary con-
ditions of the presented network model.

3. Neural network model

Neural networks are simpli®ed models of the bio-
logical structure found in human brains. These models
consist of elementary processing units, called neurons.
It is the large amount of interconnections between
these neurons and their capability to learn from data,
which provide for a strong predicting and classi®cation
tool. Therefore, the neural network approach is
selected to solve the complex relations between the

Fig. 1. Schematic design of the Equotip hardness tester: (1) loading

tube, (2) guide tube, (3) coil with coil holder, (4) release button, (5)

connection cable, (6) support ring, (7) impact body, (8) test tip, (9)

impact spring, (10) loading spring, (11) catch chuck and (12) material

to be tested.

1 Hardness is a loosely de®ned term, because the hardness deter-

mined is the result of the type of impact process (geometry and

mechanical properties of the impacting device) and the rock petro-

graphy (orientation and size of the minerals, grain shape, presence of

microcracks) [15].
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di�erent rock properties, resulting in an UCS predict-
ing model.

The network2 model presented in this article is a
supervised back-propagation neural network, making
use of the Levenberg±Marquardt approximation.
Before discussing the network architecture and its pre-
dicting capabilities a brief introduction to the training
procedure is given ®rst.

3.1. Training a network with Back-Propagation

A network needs ®rst to be trained before interpret-
ing new information. Several di�erent algorithms are
available when training neural networks. However, the
back-propagation algorithm is the most popular, for it
provides the most e�cient learning procedure for mul-
tilayer neural networks. Also the fact that back-propa-
gation algorithms are specially capable to solve
predicting problems [9] make them so popular.

The Back-Propagation networks consist of an input
layer, one or more hidden layers and an output layer
(Fig. 2). Each layer is composed of di�erent processing
units (also called neurons), connected to the units of
the next layer. A transfer function processes input data
that reach the corresponding neuron. To di�erentiate
between the di�erent processing units, values called
biases are introduced in the transfer functions. These

biases are referred to as the temperature of a
neuron [10].

During training of the network, data is processed
through the network, until it reaches the output layer
( forward pass). In this layer the output is compared to
the measured UCS value (the ``true'' output). The
di�erence or error between both is processed back
through the network (backward pass) updating the in-
dividual weights of the connections and the biases of
the individual neurons. The input and output data are
mostly represented as vectors called training pairs. The
process as mentioned above is repeated for all the
training pairs in the data set, until the network error
converged to a threshold minimum de®ned by a corre-
sponding cost function; usually the root mean squared
error (RMS) or summed squared error (SSE).

The algorithm used to train our network makes use
of the Levenberg±Marquardt approximation. This al-

Table 2

Descriptive statistics of the assembled rock sample data. Valid number of records is 226 (including training and test

sets)

Property Range Minimum Maximum Mean Standard

Deviation

Variance

UCS (MPa) 274.4 4.8 279.3 118.5 64.3 4140.6

Equotip (ÿ) 599.0 298.9 897.9 687.1 97.6 9542.3

Density (kN/m3) 13.9 17.4 31.3 26.3 2.4 5.7

Porosity (%) 38.5 0.01 38.5 2.5 5.7 33.1

Grain size (ÿ) 3.0 1.00 4.0 1.5 1.0 1.0

Table 1

Conversion values of the rock description compared to BS 5930 (1981) values. Mean UCS values in MPa

Grain size BS 5930

(mm)

Num.

Value

Rock type Mean

UCS

BS 5930 (1981) Num.

Value

®ne grained <0.06 1 granodiorite 257 extremely strong 1

medium 0.06±0.6 2 granite 230 extremely strong 2

coarse grained 0.6±2 3 dolomite 131 very strong 3

conglomerate >2 4 dolomitic limestone 133 very strong 4

limestone 120 very strong 5

sandstone 35 moderately strong 6

Fig. 2. Back-propagating neural network.

2 The network is developed in Matlab 5.0, using also a neural net-

work toolbox [8].
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gorithm is more powerful than the common used gra-
dient descent methods, because the Levenberg±
Marquardt approximation makes training more accu-
rate and faster near minima on the error surface [8].
The method is as follows:

DW � �JTJ� mI�ÿ1JTe: �2�
In Eq. (2) the adjusted weight matrix DW is calculated
using a Jacobian matrix J, a transposed Jacobian
matrix JT, a constant multiplier m, a unity matrix I
and an error vector e. The Jacobian matrix contains
the weights derivatives of the errors:

J �

@E

@wij
: :

: : :

: :
@E

@wm

���������

���������: �3�

If the scalar m is very large, the Levenberg±Marquardt
algorithm approximates the normal gradient descent
method, while if it is small, the expression transforms
into the Gauss±Newton method [8]. For more detailed
information the readers are referred to Lines and
Treitel [11].

After each successful step (lower errors) the constant
m is decreased, forcing the adjusted weight matrix to
transform as quickly as possible to the Gauss±Newton
solution. When after a step the errors increase the con-
stant m is increased subsequently. The weights of the
adjusted weight matrix (Eq. (2)) are used in the for-
ward pass. The mathematics of both the forward and
backward pass are brie¯y explained in the following.

3.1.1. Forward pass
The net input (netpj) of neuron j in a layer L and

the output (opj) of the same neuron of the pth training
pair (i.e. the inputs and the corresponding UCS value
of a rock sample) are calculated by

netpj �
Xlast
n�1

wjnopn, �4�

where, the number of neurons in the previous layer
(Lÿ 1) are de®ned by n = 1 to last neuron and the
weights between the neurons of layer L and Lÿ 1 by
wjn. The output (opj) is calculated using the logarithmic
sigmoid transfer function:

Opj � fpj�netpj � � 1

1� eÿ�netpj�yj �
, �5�

where, yj is the bias of neuron j.

The outputs of all neurons of layer L are calculated
using Eq. (5) and processed again with Eq. (4) to gen-
erate new inputs for the next layer. This process con-
tinues until the output layer is reached.

3.1.2. Backward pass
In general the output vector, containing all opj of the

neurons of the output layer, is not the same as the
true output vector (i.e. the measured UCS value). This
true output vector is composed of the summation of
tpj. The error between these vectors is the error made
while processing the input±output vector pair and is
calculated as follows:

Ep � 1

2

X
�tpj ÿ opj �2: �6�

When a network is trained with a database containing
a substantial amount of input and output vector pairs
the total error E, (sum of the training errors Ep) can
be calculated.

Et �
X

Ep: �7�

To reduce the training error, the connection weights
are changed during a completion of a forward and
backward pass by adjustments (Dw) of all the connec-
tions weights w. Eqs. (2) and (3) calculate those adjust-
ments. This process will continue until the training
error reaches a prede®ned target threshold error (i.e.
cost function).

3.2. Network architecture

Designing a network architecture requires more than
selecting a certain number of neurons, followed by
training only. Especially phenomena such as over®tting
and under®tting3 should be recognized and avoided in
order to create a reliable network. Those two aspects
Ð over®tting and under®tting Ð determine to a large
extent the ®nal con®guration and training constraints
of the network.

Mostly over®tting occurs when a network is trained
using too many training epochs. Although the training
error might reach its global minimum in this situation,
the network is unable to generalize su�ciently, because
the trained network remembers insigni®cant details of
the training data. In fact, aiming at an absolute mini-
mum in the training error is only a good approach
when the training set contains many more cases than
there are degrees of freedom (i.e. biases and weights)
in the network [12].

Fig. 3(a) and (b) depict over®tting and under®tting,
indicating that the lowest training error not necessarily
results in good predictions of the UCS. There are two

3 The network overtrained remembers insigni®cant information of

the training data. An under®tted network is unable to predict with

acceptable accuracy.

F. Meulenkamp, M. Alvarez Grima / International Journal of Rock Mechanics and Mining Sciences 36 (1999) 29±3932



underlying conditions resulting in an over®tting net-
work:

. The network has too many neurons in relation to
the amount of training cases.

. The network is trained with too many training
epochs.

A strategy to avoid over®tting is to investigate the
goodness of the predictions using di�erent architec-
tures. Afterwards, the con®guration with the smallest
root mean square error of the predictions is chosen.

The number of training epochs is kept constant
during this procedure [7]. However, after the choice of
the con®guration the number of training epochs that
will not result in an over- or under®tting network still
has to be determined.

For this reason another method was applied to con-
®gure the network to omit over®tting. The strategy
was as follows. First, an empirical formula is used to
establish the number of neurons in the network, while
keeping the con®guration of the network unchanged
and ®nally to settle the optimum number of training
epochs [Fig. 4(a)]. The following equation was used to
determine the number of hidden neurons [13]:

Nh � n

k�m� p� , �8�

where, Nh is the number of hidden neurons, n is the
number of cases in the training set, k is a noise factor4,
m and p are the amount of input and output neurons.
N is 194, m is 5 (Equotip reading, density, porosity,
grainsize and rock type as input nodes), p is 1 (UCS),
k is 4 (considering measuring errors). Using these par-
ameters in Eq. (8), around six hidden neurons seem to
be acceptable for the network design.

Secondly, a suitable con®guration of those neurons
had to be chosen. Although di�erent con®gurations
are possible, a con®guration having four neurons in
the ®rst hidden layer and two neurons in the second
hidden layer, was chosen (networks with only one hid-
den layer generally give unsatisfactory predicting
models [14]).

Finally, the determination of the most suitable num-
ber of training epochs was established. A test set was
used to evaluate the predicting capabilities of the net-
work after each epoch [Fig. 4(a) and (b)]. The weights
and biases of the network were stored whenever the
error in network predictions reached a minimum (this
gave the optimum number of training epochs).

Another test set was processed through the con®gur-
ation, having evidently the same initial weights and
biases, to conclude whether the network can general-

ize. The network generalizes when the error of the
UCS predictions of this set reaches its lowest possible
value after the same number of training epochs as the
®rst test.

Fig. 4(a) and (b) show indeed that for both test sets
the lowest root mean squared error is reached after
four training epochs. At ®rst glance, this number of
training epochs seems to be rather small to correspond
to a global minimum, but this is in fact the e�ect of
the Levenberg±Marquardt training algorithm. The
Levenberg±Marquardt algorithm is a very powerful al-
gorithm, able to train a network very quickly, up to
500 times faster than gradient decent algorithm, which
is normally used in the back-propagation procedure

Fig. 3. (a) Training error (SSE) vs number of epochs. (b) Error in

the predictions. The root mean square error (RMSE) of the network

predictions vs the number of training epochs is presented. Note that

the optimum number of training epochs does not necessarily co-

incides with a small training error [see (a)].

4 4 < k < 10. k increases when there exists a substantial amount

of noise in the data.
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Fig. 4. (a) The root mean square error (RMSE) in MPa of the predictions vs the number of training epochs using test set A. (b) The root mean

square error (RMSE) in MPa of the predictions vs the number of training epochs using test set B.
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(Fig. 5). Other reasons for the quick convergence of
the network are the small training set and the scaling5

of the training data between 0 and 1 [15].

3.3. Relative strength estimations of the input
parameters

To investigate the strength in¯uences of the di�erent
inputs on the predicted UCS of a rock sample a rela-
tive strength estimation (RSE) algorithm, proposed by
Yang and Zhang [16], was implemented in the model.
Although the RSE algorithm is designed to investigate
the hierarchical importance of input parameters used
in a neural network, it also provides a strong tool to
investigate the e�ects of the individual parameters on
the estimated network output. Fig. 6 shows the relative
strength estimations of the Equotip hardness reading,
density, porosity, rock type and grainsize. From Fig. 6
it is possible to see that the network established a posi-
tive relation between both the Equotip reading and
density and the predicted UCS value, while a negative
relation is established for the other parameters.
Meaning, for example, that when the value of rock
type increases (e.g. a weaker rock type) the predicted
UCS will decrease.

3.4. UCS predicting capabilities

In this section the predicting capability of the neural
network is evaluated. Furthermore, a comparison with
UCS predictions by statistical models is done in order
to evaluate the results of the network. The results of
the UCS predicting capabilities of both the statistical
and the neural network models are discussed.

3.4.1. Statistical UCS predictions
Two di�erent statistical UCS predicting models were

used: a curve ®tting relation, which proceeds on the
®ndings of Verwaal and Mulder [1] and Asef [3], and a
Multivariate Regression relation. The reason to evalu-
ate the prediction results of the network with a multi-
variate regression relation is the possibility to
introduce di�erent independent variables in the model
just as the network model does.

3.4.1.1. Curve ®tting relation. For the generation of the
curve ®tting relation the statistical software package
SPSS 7.5 [17] was used. An algorithm searches for a
curve ®t through the observed UCS values using a pre-
de®ned function (e.g. power function), which explains
the most of the variance of the observed data.

The following curve ®t using a power function
resulted in the most accurate UCS predicting
relation [7]:

UCS � 1:75 � 10ÿ9L3:8: �11�
In Eq. (11) L refers to the Equotip value. The curve
®tting relation (Eq. (11)) has a coe�cient of determi-
nation (R 2) of 0.806, meaning that around 80% of the

Fig. 5. Training error of the network using the gradient±descent al-

gorithm. Note that the training error has still not converged after

1000 epochs near to the training error using the Levenberg±

Marquardt algorithm (Fig. 3).

Fig. 6. Relative strength estimations (RSEs) of the di�erent input

parameters. A positive action on the output is given by a positive

value on the Y-axis, while a negative action is given by a negative

value.5 Necessary for the transfer functions used in the neurons.
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variance in the data is explained by the relation. The
UCS prediction results of the curve ®tting relation for
test set A and B are given in Tables 3 and 4 and
Figs. 7 and 8.

3.4.1.2. Multivariate regression relation. A multivariate
relation was established using the same input variables
as the neural network model: Equotip value (L), den-
sity, porosity, grainsize and rock type. This resulted in

the following equation:

UCS �0:25L� 28:14 densityÿ 0:75 porosity

ÿ 15:47 grain sizeÿ 21:55 rock type: �12�

The relation in Eq. (12) has a coe�cient of determi-

nation (R 2) of 0.903 and an estimated standard error

of 42.1 MPa. Figs. 7 and 8 and Tables 3 and 4 give

the prediction results of the multivariate regression

Table 3

Predicted UCS values of test set A, using di�erent predicting models

Number Equotip Rock type Grain size UCS (MPa)

(measured)

UCS (MPa)

(ANN)

UCS (MPa)

(Eq. (11))

UCS (MPa)

(Eq. (12))

(1) 827.4 granodiorite ®ne 269.7 240.7 214.0 244.3

(2) 853.9 granite ®ne 262.0 236.9 241.2 229.3

(3) 870.9 granodiorite coarse 256.6 254.0 260.0 231.8

(4) 869.1 granite ®ne 189.1 238.2 257.9 230.6

(5) 720.0 limestone ®ne 168.8 135.0 126.2 127.7

(6) 750.8 limestone ®ne 162.8 146.8 147.9 135.8

(7) 723.0 limestone ®ne 162.3 139.4 128.2 129.9

(8) 724.0 limestone medium 112.6 117.5 128.8 113.9

(9) 661.5 limestone medium 99.0 97.1 91.4 98.8

(10) 646.7 dolomite conglomerate 85.6 80.6 83.9 107.2

(11) 659.4 limestone medium 73.4 95.9 90.3 98.1

(12) 648.9 sandstone medium 72.7 72.8 85.0 68.1

(13) 564.4 limestone ®ne 62.0 77.1 50.0 85.7

(14) 576.1 sandstone medium 52.3 58.1 54.1 43.2

(15) 574.0 sandstone medium 51.0 57.7 53.3 42.5

(16) 698.5 sandstone conglomerate 43.8 61.4 112.4 44.2

(17) 591.3 sandstone conglomerate 35.4 46.1 59.7 17.2

Table 4

Predicted UCS value of test set B, using di�erent predicting models

Number Equotip Rock type Grain size UCS (MPa)

(measured)

UCS (MPa)

(ANN)

UCS (MPa)

(Eq. (11))

UCS (MPa)

(Eq. (12))

(1) 862.1 granodiorite coarse 274.6 253.9 250.1 230.0

(2) 855.5 granite ®ne 206.3 235.8 242.9 227.8

(3) 798.4 granite ®ne 186.8 217.7 186.8 213.5

(4) 739.0 limestone ®ne 162.3 144.1 139.3 131.7

(5) 689.0 limestone ®ne 142.3 131.2 106.7 121.1

(6) 633.7 limestone ®ne 137.9 108.5 77.7 105.6

(7) 668.3 limestone ®ne 136.2 137.2 95.0 124.5

(8) 652.9 limestone ®ne 132.7 119.3 87.0 112.2

(9) 750.3 dolomitic lmst ®ne 119.8 156.4 147.5 157.7

(10) 629.3 limestone ®ne 119.4 114.6 75.6 110.1

(11) 668.0 limestone medium 102.9 100.1 94.6 100.6

(12) 631.3 sandstone ®ne 91.7 91.2 76.5 83.9

(13) 667.4 sandstone medium 75.9 77.8 94.6 75.2

(14) 607.7 dolomite ®ne 75.2 99.7 66.2 142.0

(15) 595.0 sandstone conglomerate 38.0 42.9 61.6 14.8

(16) 400.5 mudstone ®ne 6.6 12.5 13.6 25.4
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Eq. (12). It should be noted, that the incorporated
independent variables might introduce multicollinearity
into the model. Although multicollinearity causes
problems in interpreting the regression coe�cients, it
does not a�ect the usefulness of a regression equation
for prediction of new observations [18].

3.4.2. Network UCS predictions
The UCS predictions of the network were done after

the network was trained using 4 training epochs,
resulting in a summed squared error (SSE) of the
training of 3.92. This summed squared error might be
confusing in the sense that its value seems to be high
with respect to the relative small training set used.
However, it should be noted that the summed squared
error6 of the training is the sum of the errors between
the measured and predicted output for all training vec-
tor pairs.

It is important that the input values of the test set
lie within the boundaries of the training data, because
neural networks are not capable to extrapolate beyond
the training data. Therefore, the minimum values pro-
vided in Table 2 serve as the boundary conditions of
the input test values.

3.4.2.1. Predicting results of test set A. Fig. 9 depicts
the predicting results of test set A. The correlation
coe�cient between the predicted UCS using the NN

model and the measured UCS is 0.967. This compared
with 0.957 of the predicted UCS values using multi-
variate regression analysis (Eq. (12)) and 0.910 of the
predicted UCS values using the curve ®tting relation
(Eq. (11)).

From Fig. 9 and Table 3 it can be seen that a good
correlation exists between the predicted UCS values;
using the NN model and the measured UCS values.
except the granite sample No. 4 (Table 3 and Fig. 9),

Fig. 7. Predicted UCS values vs measured UCS values for test set A,

using the curve ®tting relation (crosses) and the multivariate

regression relation (dots).

Fig. 8. Predicted UCS values vs measured UCS values for test set B,

using the curve ®tting relation (crosses) and the multivariate

regression relation (dots).

Fig. 9. Predicted UCS values vs the measured UCS values for test

set A using the neural network model.

6 This summed error should not be confused with the root mean

squared (RMSE) error, which is often used to evaluate the training

of a network, giving much smaller training errors.
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shows a strong overestimated UCS (238.2 MPa instead

of the measured 189.1 MPa). The measured UCS of

this granite rock sample is also overestimated severely

using the curve ®tting relation (257.9 MPa) and the

multivariate equation (230.65 MPa). A possible expla-

nation of the overestimation might be an incorrect

measured Equotip value. This assumption is supported

by the fact that all predicting models, especially the

curve ®tting relation which directly relates the UCS

with the Equotip reading, do show high overestimated

values. Another reason might be a bad failure during

the UCS test of sample No. 4, resulting in a too low

measured UCS compared to the corresponding

Equotip reading.

3.4.2.2. Predicting results of test set B7. Fig. 10 depicts

the UCS predictions of test set B. The correlation coef-

®cient between the predicted UCS using the NN model

and the measured UCS is 0.962. This compared with

0.906 of the predicted UCS values, using multivariate

regression analysis (Eq. (11)) and 0.914 of the pre-

dicted UCS values, using the curve ®tting relation

(Eq. (12)).

Apart from rock sample No. 9, again a good corre-

lation exists between the predicted and the measured

UCS values. Rock sample No. 9 (a dolomitic lime-

stone) shows an overestimation in the predicted UCS

value (Fig. 10 and Table 4). Because also the curve ®t-

ting relation (Eq. (11)) and the multivariate regression
relation (Eq. (12)) overestimate the UCS of this
sample, the corresponding measured Equotip value
might be considered as too high. Also the possibility
of a premature failure during the UCS test can be a
reason. Note also the too low predicted UCS values of
limestone rock sample No. 4±8 (Table 4) using the
curve ®tting relation, compared with the UCS predic-
tions, using the neural network. The predicted UCS
values of these samples using the nearest network
model are quite good, which indicates that other rock
characteristics besides the hardness of the material (i.e.
Equotip reading) in¯uence the strength of these
samples as well.

An indication that both the statistical relations and
the neural network can generalize is given by the cor-
relation coe�cients of both test sets. Comparison of
the correlation coe�cients of the multivariate re-
gression relation (Eq. (12)), the curve ®tting relation
(Eq. (11)) and the neural network, show that especially
the accuracy of the UCS predictions using the multi-
variate regression equation is rather variable for the
two test sets. For test set A, the multivariate regression
relation reaches a correlation coe�cient of 0.957, while
the same relation reaches only 0.906 when using test
set B. The correlation coe�cients of the curve ®tting
relation and the neural network are more or less con-
stant for both test sets. The curve ®tting relation
(Eq. (11)) has a correlation coe�cient of 0.910 for test
set A and 0.914 for test set B, while the correlation
coe�cients of the neural networks are 0.967 for test
set A and 0.962 for test set B. This suggests that the
generalization capability of both the network as well
as the curve ®tting relation is good. Examining the ac-
curacy of the predictions of both the statistical
methods and the neural network, shows that the latter
gives the most accurate predictions in terms of the cor-
relation coe�cients.

4. Conclusions

Using neural networks to predict the UCS of rock
samples does have some bene®ts compared to the stat-
istical predictions. First, the UCS predictions are more
accurate than the statistical predictions. Furthermore,
and more important, the neural network is able to gen-
eralize much better than statistical models do. This is
indicated by the consistency of the correlation coe�-
cients for di�erent test sets. The multivariate regression
relation (Eq. (12)) shows inconsistent correlation
values. This makes the applicability of neural networks
for the predictions of the UCS more reliable than stat-
istical models.

One of the major disadvantages of neural networks
compared to statistical or fuzzy models is their opa-

Fig. 10. Predicted UCS values vs the predicted UCS values for test

set B using the nearest network model.

7 Test set B does not corresponds to the initial data set. So, it con-

stitutes a real veri®cation (or checking set).

F. Meulenkamp, M. Alvarez Grima / International Journal of Rock Mechanics and Mining Sciences 36 (1999) 29±3938



queness. Therefore it is recommended to make a
neural network model more transparent by verifying
the established relations between the di�erent input
parameters and the output by using for example the
RSE algorithm, as discussed in this paper.
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